Project Name: Soils of the Lower Macquarie Valley, New South Wales
Project Code: Macquarie Site ID: 218 Observation ID: 1

Agency Name: CSIRO Division of Soils (ACT)

Site Information

Desc. By: N.J. McKenzie Locality:

Date Desc.:17/06/85Elevation:No DataMap Ref.:Sheet No.: 85341:10000Rainfall:No Data

Northing/Long.: 6464167 AMG zone: 55 Runoff: Moderately rapid
Easting/Lat.: 603500 Datum: AGD66 Drainage: Moderately well drained

Geology

ExposureType: Soil pit Conf. Sub. is Parent. Mat.: No Data

Geol. Ref.: No Data Substrate Material: No Data

Land Form

 Rel/Slope Class:
 No Data
 Pattern Type:
 No Data

 Morph. Type:
 Mid-slope
 Relief:
 No Data

 Elem. Type:
 No Data
 Slope Category:
 No Data

 Slope:
 %
 Aspect:
 No Data

Surface Soil Condition (dry): Hardsetting, Surface crust

Erosion:

Soil Classification

ASC Confidence:

Australian Soil Classification: Mapping Unit: GIN GIN N/A AEOLIAN

DEPOSITS

Principal Profile Form: Gn4.12
Great Soil Group: N/A

Confidence level not specified

Site Disturbance: Complete clearing. Pasture, native or improved, cultivated at some stage

Vegetation:

Tall Strata - Tree, 12.01-20m, Isolated clumps. *Species includes - Callitris species

Surface Coarse Fragments:

Profile Morphology

A1 0 - 0.15 m Yellowish red (5YR3/5-Moist); ; Sandy clay; Weak grade of structure, 20-50 mm, Subangular blocky; Rough-ped fabric; Common (1-5 per 100mm2) Very fine (0.075-1mm) macropores,

Common (1-5 per 100mm2) Fine (1-2mm) macropores, Common (1-5 per 0.01m2) Medium (2-5mm) macropores, Moderately moist; Weak consistence; Field pH 6 (Raupach); Many, very fine

(0-1mm) roots; Many, fine (1-2mm) roots; Gradual, Smooth change to -

B1 0.15 - 0.45 m Yellowish red (5YR3/6-Moist); ; Light medium clay; Moderate grade of structure, 20-50 mm,

Polyhedral; Rough-ped fabric; Many (>5 per 100mm2) Very fine (0.075-1mm) macropores, Many (>5 per 100mm2) Fine (1-2mm) macropores, Common (1-5 per 0.01m2) Medium (2-5mm) macropores, Moderately moist; Weak consistence; Few cutans, <10% of ped faces or walls coated; Field pH 7 (Raupach); Common, very fine (0-1mm) roots; Common, fine (1-2mm) roots;

Gradual, Smooth change to -

B21 0.45 - 0.85 m Red (2.5YR4/7-Moist); ; Medium clay; Moderate grade of structure, 10-20 mm, Polyhedral;

Smooth-ped fabric; Common (1-5 per 100mm2) Very fine (0.075-1mm) macropores, Common (1-5 per 100mm2) Fine (1-2mm) macropores, Dry; Firm consistence; Common cutans, 10-50% of ped faces or walls coated; Field pH 7 (Raupach); Common, very fine (0-1mm) roots; Common,

fine (1-2mm) roots; Diffuse, Smooth change to -

B22 0.85 - 1.35 m Yellowish red (5YR5/7-Moist); ; Medium clay; Moderate grade of structure, 10-20 mm, Prismatic;

Rough-ped fabric; Common (1-5 per 100mm2) Very fine (0.075-1mm) macropores, Dry; Firm consistence; 20-50%, stony, 200-600mm, subangular, dispersed, coarse fragments; Common cutans, 10-50% of ped faces or walls coated; Field pH 7.5 (Raupach); Few, very fine (0-1mm)

roots;

Morphological Notes

Observation Notes

Mitchell Soil Profile Class, Well Drained Phase, sheep

Site Notes

Project Name: Project Code: Agency Name: Soils of the Lower Macquarie Valley, New South Wales Macquarie Site ID: 218 Observation CSIRO Division of Soils (ACT) Observation ID: 1

Laboratory Test Results:

										
pН	1:5 EC						CEC	E	CEC	ESP
	dS/m		9							%
6.1A 5.8A		4.6E	0.4	1.1	0			6	.1D	
6.7A 7.3A		5.1E	3.2	0.2	0.4			8	.9D	
CaCO3	Organic C	Avail. P	Total P	Total N						sis Clay
%	%	mg/kg	%	%	%	Mg/m3	٠.		%	Olay
						1.57 1.53 1.56 1.60		15.8A 9.5A		7 29.5 7 62.6
COLE						tents	15 Dan	K sat	K uns	at
	Sat.	0.05 Bar				5 Bar	io Bar	mm/h	mm/	h
0.02 <i>A</i> 0.041 <i>A</i>	A A		0.14G 0.12G 0.18G			(0.08D 0.15D			
	6.1A 5.8A 6.7A 7.3A CaCO3 %	dS/m 6.1A 0.035A 5.8A 0.044A 6.7A 0.137A 7.3A 0.203A CaCO3 Organic C % %	Ca dS/m 6.1A 0.035A 4.6E 5.8A 0.044A 6.7A 0.137A 5.1E 7.3A 0.203A CaCO3 Organic Avail. C P mg/kg COLE Grav Sat. 0.05 Bar 0.013A 0.02A 0.041A	Ca Mg dS/m 6.1A 0.035A 4.6E 0.4 5.8A 0.044A 6.7A 0.137A 5.1E 3.2 7.3A 0.203A CaCO3 Organic Avail. Total C P P mg/kg % COLE Sat. 0.05 Bar 0.1 Bar g/k 0.013A 0.14G 0.02A 0.12G 0.041A 0.18G	Ca Mg K dS/m 6.1A 0.035A 4.6E 0.4 1.1 5.8A 0.044A 6.7A 0.137A 5.1E 3.2 0.2 7.3A 0.203A CaCO3 Organic Avail. Total Total C P P N N Mg/kg % % COLE Gravimetric/Volumetric W Mg/kg % % COLE Sat. 0.05 Bar 0.1 Bar g/g - m3/m3 0.013A 0.14G 0.02A 0.12G 0.041A 0.18G	Ca Mg K Na Cmol (+ 6.1A 0.035A 4.6E 0.4 1.1 0 5.8A 0.044A 6.7A 0.137A 5.1E 3.2 0.2 0.4 7.3A 0.203A CaCO3 Organic Avail. Total Total Total C P P N K M M M M M M M M M M M M M M M M M M	Ca Mg K Na Acidity Cmol (+)/kg 6.1A 0.035A 4.6E 0.4 1.1 0 5.8A 0.044A 6.7A 0.137A 5.1E 3.2 0.2 0.4 7.3A 0.203A CaCO3 Organic Avail. Total Total Bulk Density Mg/m3 C P P P N K Density Mg/m3 1.57 1.53 1.56 1.60 COLE Gravimetric/Volumetric Water Contents Sat. 0.05 Bar 0.1 Bar 0.5 Bar 1 Bar 5 Bar g/g - m3/m3 0.013A 0.14G 0.02A 0.12G 0.041A	Ca Mg K Na Acidity Cmol (+)/kg 6.1A 0.035A 4.6E 0.4 1.1 0 5.8A 0.044A 6.7A 0.137A 5.1E 3.2 0.2 0.4 7.3A 0.203A CaCO3 Organic Avail. Total Total Bulk Pa C P P N K Density GV % % mg/kg % % % Mg/m3 1.57 1.53 1.56 1.60 COLE Gravimetric/Volumetric Water Contents Sat. 0.05 Bar 0.1 Bar 0.5 Bar 1 Bar 5 Bar 15 Bar g/g - m3/m3 0.013A 0.14G 0.08D 0.02A 0.12G 0.08D 0.041A 0.18G 0.15D	Ca Mg K Na Acidity Cmol (+)/kg 6.1A 0.035A 4.6E 0.4 1.1 0 6 5.8A 0.044A 6.7A 0.137A 5.1E 3.2 0.2 0.4 8 7.3A 0.203A CaCO3 Organic Avail. Total Total Bulk Particle S GV CS Mg/m3 C P P P N K Density GV CS Mg/m3 1.57 15.8A 1.53 1.56 9.5A 1.60 COLE Gravimetric/Volumetric Water Contents 1.60 COLE Gravimetric/Volumetric Water Contents 1.5 Bar g/g - m3/m3 O.013A 0.14G 0.08D 0.02A 0.12G 0.08D 0.041A 0.08D 0.041A	Ca Mg K Na Acidity Cmol (+)/kg 6.1A 0.035A 4.6E 0.4 1.1 0 6.1D 5.8A 0.044A 6.7A 0.137A 5.1E 3.2 0.2 0.4 8.9D 7.3A 0.203A CaCO3 Organic Avail. Total Total Bulk Particle Size Analys GV CS FS Silt Mg/m3 6 7

Soils of the Lower Macquarie Valley, New South Wales **Project Name:**

Project Code: Macquarie Site ID: Observation ID: 1 218

Agency Name: **CSIRO** Division of Soils (ACT)

Laboratory Analyses Completed for this profile

15C1_CA Exchangeable bases (Ca2+,Mg2+,Na+,K+) - alcoholic 1M ammonium chloride at pH 8.5, pretreatment

for soluble salts

15C1_K Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment for soluble

salts

15C1 MG Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment for soluble

salts

15C1_NA Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment for soluble

salts

15J_BASES Sum of Bases

EC of 1:5 soil/water extract 3A1 4A1 pH of 1:5 soil/water suspension

Clay (%) - Coventry and Fett pipette method

P10_CF_C P10_CF_CS P10_CF_FS Coarse sand (%) - Coventry and Fett pipette method Fine sand (%) - Coventry and Fett pipette method P10_CF_Z Silt (%) - Coventry and Fett pipette method

P3A1 Bulk density - g/cm3

P3B1GV_15 15 BAR Moisture g/g - Gravimetric of ground sample (<2mm) using pressure plate

P3B4GV_01 0.1 BAR Moisture g/g - Gravimetric of soil clods (Soil Survey Staff, 1967)

P5_COLE Coefficient of Linear Extensibility (Grossman et al. 1968)